
Albert Nijhof 24/06/2016

ROM and RAM in a (Flash)ROMforth

Q u e s t i o n s

▶ Two HEREs?
For a forth compiling in (Flash) ROM the starting point is that program code and
unchangeable data go into ROM and changeable data into RAM. Does this mean
that we need two HEREs?

▶ A double set of commands?
Writing in ROM is technically another action than writing in RAM. Does this
mean that we need a double set of commands for the words that write in
memory?

▶ CFA in RAM?
DOES> overwrites the CFA of a word, but that is not possible in ROM. Should
CFAs therefore be in RAM?

▶ Body in RAM or in ROM?
CREATE TEST
Wil there be a RAM or a ROM address on the stack after execution of TEST ?

Because the forth standard does not regulate these things, a ROMforth always
deviates from the standard.

A n s w e r s

ROM words and RAM words

- for ROM - - for RAM -
ROMHERE RAMHERE
ROM! ROMC! ROMMOVE RAM! RAMC! RAMMOVE
ROM, ROMC, RAM, RAMC,
ROMALIGN RAMALIGN
ROMALLOT RAMALLOT
ROMCREATE RAMCREATE

Solution 1: Words that take the address from stack could be made "address-
smart", Forth decides whether it is in ROM or in RAM.
Unfortunately, that does not stand up for words that function around HERE.
The destination address for those words (for example C,) is implicit, so you
must indicate in one way or another whether it concerns ROMHERE or
RAMHERE.

Solution 2: Define the two words ROM and RAM that switch between RAM
mode and ROM mode. I will not discuss here the problems associated with this
solution, because there is a simpler solution:

The noForth solution

In noForth we have come up with a simpler solution. On closer inspection it
appears that the double set of commands can be considerably reduced. Above
the standard words we only need two extra words: CHERE and M, (printed in
red in this text).

Two
HEREs

Yes, we need two HEREs. HERE is the data space pointer in RAM.
CHERE is the dictionary pointer in ROM (code-HERE / constant-
HERE).

You will rarely use CHERE explicitly.

ROM
words

The comma words , C, M, and ALIGN can only be used at
CHERE in ROM.

With M, (a multiple C,) you add a string to the dictionary at CHERE. It
replaces the function of a MOVE to ROM.
: M, (adr len --) 0 ?DO COUNT C, LOOP DROP ;

Why are the comma words and ALIGN not needed for RAM?

Imagine you loaded a program in noForth. You have frozen it with FREEZE.
When, during compiling, RAM is reserved and initialized (that's what RAM, and
RAMC, should do), the content of that RAM is lost when the chip is turned off.
How to solve this?
By only reserving RAM with ALLOT during compilation. The content of that
RAM remains then undetermined. Later, at runtime, you initialize the ALLOTted
RAM with the ordinary store words.

For this reason in noForth no number is required on stack when defining a
value. The content of a newly defined value is undetermined. (Maybe we
should have called it VAL?)

With ALLOT you explicitly state how much space you reserve. You can see to
it that the amount is always even (depending on the processor) and that makes
ALIGN unnecessary for RAM.

RAM
words

ALLOT reserves space at HERE in RAM that should be initialized
later by the program with ! C! and MOVE.

Also all other non-comma words that change something in the memory such
as: +! TO *BIS *BIC *BIX UPPER MOVE FILL etc. only function in
RAM.

Why are ! C! and MOVE not needed for ROM?

Writing to ROM (nearly) always takes place incrementally at CHERE with the
comma words (except: see "Patching in ROM" below). Words like +! that
overwrite something in memory cannot be used for ROM. This is what remains
of the RAM / ROM words:

for RAM: HERE ! C! MOVE ALLOT
for ROM: CHERE , C, M, ALIGN

Patching in ROM

In exceptional cases you may need a ROMALLOT, for example for making a
table in ROM which you think for one reason or another can only be filled
afterwards. You can solve that with M,.

CREATE LIST CHERE 8 M,

CHERE moves 8 bytes up, but nothing is written to ROM. To fill the table you
have the commands ROM! or ROMC!. They exist in noForth (they are part of
the comma words) but you will rarely need them explicitly.

A noForth detail: when a command is expected to write x to address y in ROM
it will leave out that write action when y already contains x. This prevents
unnecessary write actions in ROM.

DOES>

In noForth CREATE can handle all these situations:

1. CREATE in ROM without DOES>
2. CREATE in ROM with DOES>
3. CREATE in RAM with ALLOT without DOES> (allot-bit = 0)
4. CREATE in RAM with ALLOT and DOES> (allot-bit = 0)

The noForth
trick with
DOES>

CREATE leaves the CFA of a new word empty because a
DOES> may follow.

But, who will put the correct address in the CFA when there is no DOES>
after CREATE?

A word must be found before it can be executed or compiled. FIND checks
the CFA of every word it finds. When the CFA is empty FIND will put the
correct address in it in accordance with the allot bit (see below).

▶ CREATE in ROM without DOES>
create HI (-- ROMadr)
S" Hello! " dup c, m, align
hi count type <enter> Hello!

▶ CREATE in ROM with DOES>
: CONSTANT (x 'name' --)
 create , does> @ ;
12 constant DOZEN
dozen . <enter> 12

CREATE

n ALLOT reserves n bytes at HERE in RAM. But sometimes it does more:

The noForth
trick with
CREATE

When still nothing is compiled after the CFA of a new word
then, and only then, ALLOT makes the allot bit zero and
executes HERE , (pointer to the allotted space) before it
allots the bytes.

In noForth every word has a (temporary) allot bit in addition to an immediate
bit. Just as IMMEDIATE makes the immediate bit zero, ALLOT makes the
allot bit zero.
In order to avoid that these bits come together in one byte noForth uses the
lowest bit in the empty CFA as allot bit. This is harmless because the address
that really will be put in the CFA is always even. (Technically, a 1-bit in
FlashROM can be changed into a 0-bit, the reverse is not possible without
erasing a whole block.)
An empty CFA will be filled by FIND in accordance with the allot bit and after
that the allot bit no longer plays a role.

▶ CREATE with ALLOT without DOES> (allot-bit = 0)
: STRING (#bytes 'name' --)
 create allot ;
8 string HI (-- RAMadr)

: PLACE (adr len dest --)
 2dup c! 1+ swap move ;
S" Ciao! " hi place
hi count type <enter> Ciao!

S" Ola! " hi place
hi count type <enter> Ola!

▶ CREATE with ALLOT and DOES> (allot-bit = 0)
: VVALUE ('name' --)
 create 2 allot does> @ @ ;
vvalue TRY
Well, how can you fill it with a number?
: TTO ('name' --) ' >body @ state @
 if postpone literal postpone ! exit
 then ! ; immediate
9 tto try try . <enter> 9
For the real VALUE this is solved in a safer way with TO but that's another
story.

For the puzzlers: one of these seven definitions is not correct. Which? Why?
1) : VARIABLE1 here 2 allot create , does> @ ;
2) : VARIABLE2 create here , 2 allot does> @ ;
3) : VARIABLE3 create 2 allot here , does> @ ;
4) : VARIABLE4 create 2 allot does> @ ;
5) : VARIABLE5 here 2 allot constant ;
6) : VARIABLE6 here constant 2 allot ;
7) : VARIABLE7 create 2 allot ;

